
Building a Multidimensional Pattern Language for Insider
Threats
DAVID MUNDIE, CERT� Program, Software Engineering Institute
ANDREW P. MOORE, CERT Program, Software Engineering Institute
DAVID MCINTIRE, CERT Program, Software Engineering Institute

As part of ongoing insider threat research at the CERT Program, we have developed 26 patterns for
insider threat. This paper describes our attempts at organizing those patterns into a pattern language. After
discarding several hierarchical, unidimensional models, we adopted a multidimensional organization that
allows searching and browsing along five dimensions simultaneously, using faceted classification. We
illustrate the resulting pattern language with a sample pattern, including a discussion of our use of
Business Process Modeling Notation (BPMN) and brief descriptions of all the patterns.

1. INTRODUCTION

Developing a moderately large number of patterns will inevitably present the developer with a
choice: leave the patterns as a flat, unorganized list—a pattern catalog or pattern collection—or
tease out the connections among the patterns and organize them into a true pattern language. As a
recent paper [Hafiz 2011] on a security pattern language points out, pattern languages, because
they organize their constituent patterns into meaningful hierarchies and networks, are inherently
easier to learn, easier to navigate, and easier to apply than simple pattern catalogs.

However, as Hafiz, Adamczyk, and Johnson [2011] point out, building a pattern language out of
of a pattern collection is not an easy task. It involves understanding the complex connections and
interactions among patterns, as well as the intended audiences and their anticipated use cases.
Christopher Alexander [Alexander1977] set the bar high, and achieving anything approaching the
lucidity and grace of his language is daunting.

These issues confronted us during our insider threat pattern work at the CERT Program. By
pattern mining our database of insider threat cases, our models of insider behavior, and related
materials, we developed 25 insider threat patterns. But we would not have been satisfied with
publishing them as a flat catalog of unrelated patterns. Insider threat must be dealt with from an
enterprise architecture perspective, using a synergistic set of interdependent strategies, so it
seemed obvious that we needed to build an integrated pattern language.

The challenge was to determine the best way to integrate our patterns into an organic whole. We
considered and rejected six possible organizational principles for our pattern language before
deciding that not one of them alone could adequately express the richness of our language. We
finally realized that having to choose a single organization as the best organization was a false

Authors' addresses: David Mundie, email: dmundie@cert.org. A.P. Moore, email: apm@cert.org. David McIntire, email:
dmmcintire@cert.org. All authors are from the Software Engineering Institute, Carnegie Mellon University, 4500 Fifth Avenue,
Pittsburgh, PA 15213.

A preliminary version of this paper was presented in a writers' workshop at the 19th Conference on Pattern Languages of
Programs(PLoP). PLoP'12, October 19-21, Tucson, Arizona, USA. ACM 978-1-4503-2786-2

� CERT and CERT Coordination Center are registered marks owned by Carnegie Mellon University. The CERT Program is part
of the Software Engineering Institute, a U.S. Department of Defense federally-funded research and development center.

� Copyright 2012 Carnegie Mellon University

dilemma. Our patterns existed in multiple dimensions simultaneously, and we needed a pattern
language that captured all those dimensions.

In this paper, we first describe the development of our multidimensional pattern language
structure. We then present an example pattern to illustrate the use of Business Process Modeling
Notation (BPMN), a feature of the language that we believe is unusual, and conclude with a
catalog of the constituent patterns in our language.

2. THE REJECTED APPROACHES

To illustrate the development of our pattern language, we briefly discuss each of the
organizational principles we considered and rejected as the single taxonomy for our patterns.

Business Units. Many of our patterns are related to questions in the CERT Program’s Insider
Threat Assessment tool, which is used to assess an organization’s preparedness for addressing
insider threats. The questions of the Insider Threat Assessment are arranged by business units to
facilitate interview schedules. Classification by business unit also facilitates implementation of the
patterns; like the swim-lane diagrams of the process improvement community, arranging
assessment questions by business units makes it easy for stakeholders to quickly understand what
their roles are and what they must do to address insider threat.

However, organizing the patterns this way seemed contrary to what we know about the insider
threat problem. Analysis of many insider threat cases has taught us that insider threats cut across
business units and only enterprise-wide strategies can effectively combat them, so arranging the
patterns by business units did not seem like the right approach.

Insider Threat Lifecycle Phase. Insider threat controls and capabilities are commonly divided into
“prevention,” “detection,” and “response” activities. These three phases of the lifecycle of insider
threat mitigation became our top-level categories during the pattern mining effort. Although they
are widely used and immediately understood, these categories do not seem to get at the heart of
insider threat.

The Zachman Framework. Throughout our pattern mining, we had assumed that our insider threat
patterns would be complementary to existing information security pattern languages. We turned
for inspiration to Chapter 4 of Security Patterns, by Schumacher et al. [Schumacher 2006], which
maps the security patterns discussed in the body of the book to the Zachman framework
[Zachman1987]. At this point we became aware that the difference between insider threat patterns
and traditional security patterns might be greater than we had realized. In our view organizational
security is not just a technology issue but also a people issue, and even more so when dealing with
insider threat. Our mapping of insider threat patterns to the Zachman framework bore this out. Of
our 25 patterns, 16 mapped to just 2 of the 10 cells in the Zachman diagram (“Risk management”
and “Approaches”). The reason is that our patterns were all at the enterprise security strategy and
policy level (Z1-2). Very few of the patterns were at the mechanisms and implementations level.
Interestingly, our lifecycle classification found a home in the “Approaches” cell.

Multidimensional Pattern Languages Page - 2

Figure 1. The insider threat pattern language mapped to the Zachman framework.

The Schumacher Landscape. Chapter 5 of Security Patterns [Schumacher 2006], “The Security
Pattern Landscape,” describes the categories that organize the body of the book. They correspond
roughly to the categories in the Zachman diagram in Chapter 4. As with those categories, our
insider threat patterns were most at home among the “Enterprise Security and Risk Management”
patterns, and much less so among the “Identification and Authentication” patterns, the “Operating
System Access Control” patterns, and the “Firewall Architecture” patterns. In retrospect the reason
is obvious: the crux of the insider threat problem is that to do their jobs efficiently, insiders are
trusted by their organizations and are left largely unfettered by authentication controls, access
controls, and firewalls. Those technical controls need to be designed with insider threats in mind,
but that is just one high-level pattern.

The Hafiz Metapattern. Next we turned to the paper “Growing a Pattern Language (for Security)”
[Hafiz 2011]. This ambitious project defines a pattern language for many known security patterns.
The paper has a valuable discussion of how to classify security patterns as a preliminary step to
organizing them into a pattern language. The authors first considered a classification using the
domain concepts of confidentiality, integrity, and availability, but they found those categories too
general. Then they examined the possibility of using a Zachman-style enterprise architecture
classification, but they noted that most of their security patterns fell into a small number of the
cells in the table. In the end Hafiz et al. settled on a hybrid metapattern based on both the
enterprise architecture scheme and a scheme based on threat models.

In theory this organization might have worked for us, but in reality it was difficult to reconcile our
patterns with those in the metapattern. As with the Schumacher landscape, most of our patterns fit
into just one of the seven categories in the Hafiz schema, namely the “Higher-Level Patterns.” The
threat model focuses on external threats, and key processes for insider threat (human resources
and legal, for instance) have no place in the model.

Multidimensional Pattern Languages Page - 3

Resilience Management Model. Finally we turned to the CERT® Resilience Management Model
(CERT®-RMM). Perhaps unsurprisingly, this is a much better fit for our insider threat patterns
because RMM is a broad-based model of the organizational process areas needed for resilience.
Our insider threat patterns were spread fairly evenly across 9 of CERT-RMM’s 26 process areas.
CERT-RMM has processes that cover traditional security concerns such as asset management,
monitoring, and incident management, but it also encompasses important insider threat areas that
are less important for security patterns, such as human resource management, knowledge and
information management, external dependencies, and organizational training and awareness.
However, despite the impedance match between RMM and our patterns, we felt there were other
aspects such as business units and insider threat lifecycle phases that we wanted to capture.

Figure 2. The insider threat pattern language mapped to CERT-RMM. Key to abbreviations: RTSE: Resilience
Technology Solutions Engineering, HRM: Human Resource Management, OTA: Organizational Training and
Awareness, MON: Monitoring, AM: Asset Management, EC: Environmental Controls, EXD: External Dependencies,
IMC: Incident Management and Controls, and KIM: Knowledge and Information Management.

3. THE SOLUTION: A MULTIDIMENSIONAL PATTERN LANGUAGE

By the end of our investigation, we understood that we had run up against a very old problem in
classification: trying to squeeze a multidimensional classification space into a one-dimensional
hierarchy. It seems clear to us now that no single classification will serve all users and all use
cases equally well. In the pre-PC era, there were legitimate reasons to stick with one-dimensional
taxonomies, and they are still useful for many purposes, but computers offer more flexible
alternatives. One alternative that has achieved some popularity for data retrieval is tagging.
However, we believe that tagging is a poor choice for organizing a pattern language because it is
too loosely structured and unpredictable for navigation and education.

Instead, we chose a less well-known solution to the problem of multidimensionality. Faceted
classification is a library categorization technique which dates back to Condorcet’s 1794 Esquisse
d’un Tableau Historique des Progrès de L’Esprit Humain [Baker 1962]. S. R. Ranganathan’s
colon classification [Ranganathan 2007] is widely used in Indian libraries and is arguably the
fullest expression of faceted classification, comprising 42 main classes and five colon-separated
facets for finer categorization. Recently faceted classification has come to be widely used on the

Multidimensional Pattern Languages Page - 4

internet in search engines. For example, Amazon.com uses faceted classification when a user
searches for a product: the website allows users to narrow and extend their search in orthogonal
dimensions such as price, color, or manufacturer.

The specific instantiation of faceted classification we used is the facet map, as implemented by
Facetmap software.1 This tool allows users to browse their data in a multidimensional space. We
found it straightforward to build an insider threat facet map that categorizes each of the patterns in
our pattern language in a five-dimensional space defined by the six classifications described above
minus the Hafiz metapattern.

Figure 3. The Facetmap interface.

1 www.facetmap.com

Multidimensional Pattern Languages Page - 5

We found two principal benefits of organizing the pattern language as a facet map. First, it
enables a very usable browsing interface that allows users to drill down to the exact aspects of the
patterns that are of interest to their immediate use cases. Second, the faceted classification’s
formal description of the pattern language organization makes it easy to generate alternate
representations, such as a hierarchy with RMM process areas as the top-level categories.

Using classifications that transcend three dimensions and giving up our paper-based hierarchical
structures takes some getting used to. Still, as the distinction between print and electronic
documents continues to disappear, and as web searches using facet maps become ever more
common, we think that multidimensional organization may make it to the mainstream.

After this work was completed, it came to our attention that there is a precedent for using faceted
classification for pattern languages. In [VanHilst 2009] Michael VanHilst and his colleagues
describe a six-dimensional faceted classification that they devised for their security pattern
language. Their approach is similar in spirit to ours, but differs in the details because we are
dealing with architectural patterns rather than design patterns. For example, their lifecycle
dimension is similar to ours, but we have nothing equivalent to the “code source” dimension,
which is specific to software development.

4. OVERVIEW OF THE PATTERN LANGUAGE

To illustrate the patterns from which the pattern language was derived, this section presents a
single pattern in some detail and briefly describes the other patterns.
4.1 A Sample Pattern

A particularly insidious form of insider threat involves modifying the source code of software
being developed within the insider’s organization. Such modifications can be very difficult to
detect, especially if the modifications are made to compilers or other tools for writing software.

Considering insider threats during the software development lifecycle (SDLC)

Context

The organization develops software for use externally or, more critically, internally.

Problem

At any point in the software development lifecycle (SDLC), malicious insiders can either inject
malicious code or create vulnerabilities in the software that can be exploited later. Such
modifications of the software can be extremely difficult to detect.

Resistance to an insider maliciously modifying code is in principle just another design
consideration (such as survivability, resilience, fault-tolerance, maintainability, and security) that
must be taken into account throughout the lifecycle. However, because the insider software
developers cannot be trusted, insider modification of code is particularly insidious and difficult to
detect.

Solution

The basics of code quality assurance (reviews, walkthroughs, etc.) are essential to preventing the

Multidimensional Pattern Languages Page - 6

corruption of the software produced, and organizations should review them to ensure they account
for insider threat, especially insider collusion. Other techniques include the following:
1. Rigorous change management and configuration management. It is much easier to detect any

malicious changes incrementally, as they are being checked into the repository, than it is to
detect them after the entire project is complete.

2. Careful selection of compilers and development tools. Ken Thompson’s 1984 Turing Award
lecture pointed out the near-impossibility of detecting vulnerabilities injected by malicious
compilation tools. Diverse double-compiling is a partial countermeasure.

3. Coding standards. A good style guide will increase the probability that code review will detect
abnormal code injections.

4. Pair programming. The agile practice of pair programming will make code injection much
more difficult because it would require the collusion of both programmers.

4.2 Overview of the Pattern Language

Our insider threat patterns were mined using materials that have been developed over a long
period time within the CERT insider threat center. Elisa Bertino has recently published a useful
survey [Bertino 2012] of the insider threat landscape.

• Consider insider threats during the SDLC. How can organizations that develop software

protect against malicious modifications by insiders? Enforce configuration management, use
code reviews, carefully select development tools, use coding standards, and practice pair
programming.

• Mistrust trusted partners. How can organizations that have given external organizations access
to important assets protect against malicious actions by those external organizations? Create
clear and detailed service level agreements (SLAs), use visibility mechanisms, and check the
external organization’s credentials of attention to insider threats.

• Manage motives. How can organizations deter insiders’ decision to attack? Create loyalty to
the organization, and establish a system of sanctions.

• Create clear limits. How can organizations minimize the probability that insiders will
maliciously break the rules of the organization? Institutionalize clear, unambiguous,
enforceable policies; and establish a sustained program of security awareness training.

• Disincentivize betrayal. How can organizations minimize the disgruntlement that has been
shown to precede most insider attacks? Play fair, intervene positively, plan ahead for
reorganizations and other disruptive events.

• Deter betrayal. How can organizations tip the balance of the insider’s scale of potential benefit
versus potential harm in favor of not taking malicious action? Skillfully handle sanctions,
demotions, and terminations; define a policy on punishment for insider attacks; establish
procedures for evaluating employees prior to management intervention.

• Manage opportunity. How can organizations remove the opportunity for insiders to attack the
organization’s assets? Re-engineer physical and cyber access controls, taking insider threats
into account.

• Control physical access. How can organizations guard their physical assets against
unauthorized access by insiders? Tailor existing physical security policies to ensure employees
cannot bypass them by virtue of their insider status; use fine-grained mechanisms to detect

Multidimensional Pattern Languages Page - 7

unauthorized access to off-limits portions of the facility, tampering with physical security
systems, and physical theft of organizational property.

• Control cyber access. How can organizations guard their cyber assets against unauthorized
access by insiders? Use dual control for accessing critical assets, exercise meticulous account
management, ensure accountability through effective change management.

• Monitor the organization. How can organizations understand their risk of malicious insider
activity? Institute a monitoring program that collects information on the status of insider
vulnerabilities and incidents within the organization.

• Share information across departments. How can organizations improve their insider threat
monitoring by combining behavioral and technical alerts? Address privacy concerns by using
abstract SIEM interfaces and weight inputs from various sensors appropriately.

• Monitor employees. How can organizations monitor their employees in a way that is legal,
acceptable to all stakeholders, effective, and affordable? Maintain morale through fairness and
communication, optimize resources, secure the results of monitoring.

• Avoid the trust trap. How can organizations avoid falling into a false sense of security through
relaxed monitoring of trusted insiders? Use a formal language for fine-grained policies,
educate managers about the trust trap, use modern access control mechanisms such as role-
based access control (RBAC).

• Use optimized monitoring for early detection. How can organizations configure their
infrastructure so that a harmful insider attack will be detected as soon as possible? Optimize
sensor deployment, improve analysis algorithms, use more sensitive sensors, deploy more
sensors, use sensors that react to different inputs.

• Combine technical and behavioral monitoring. How can organizations combine technical and
behavioral monitoring to increase the effectiveness of their insider attack detection? Share
alerts instead of data; create a small, ultra-trusted team that is allowed to access all data within
the organization.

• Create accurate rule sets. How can organizations improve the effectiveness of their insider
attack detection by improving the accuracy of their rule sets? Start with a large number of
rules gathered from empirical data, focus on disgruntlement, use machine learning algorithms,
use expert systems.

• Screen employees and potential employees. How can organizations minimize their exposure to
candidates with past experiences that predispose them to insider attacks? Conduct background
checks to decrease the time at which a malicious employee’s insider threat score reaches the
threshold for further investigation.

• Detect malicious manipulation of information. How can organizations quickly detect
malicious modifications to its information assets? Keep detailed logs of accesses to critical
assets, keep backups and hashcodes of the assets for comparison, instrument the products that
are used to manipulate the data.

• Detect violations of acceptable use. How can organizations detect violations fairly and
efficiently, especially given the widely varying definitions of acceptable use? Use an
implementation strategy based on a cost-benefit analysis of classes of unacceptable uses.

• Use external sources of information. What external sources of information should
organizations consider when expanding employee monitoring beyond themselves? Use
information from customers and information from social networks.

• Audit effectively. How can organizations best leverage their investment in monitoring and
logging and avoid the pitfalls in this domain? [Under development.]

• Learn from reports. How can organizations make good use of reports of insider activity?
[Under development.]

• Encourage reporting by coworkers. How can organizations create an atmosphere in which
employees will be more willing and able to report suspicious behavior? Create well-enforced

Multidimensional Pattern Languages Page - 8

policies that require reporting; encourage a climate of trust, fairness, and ethical behavior
through awareness training; use anonymous reporting mechanisms.

• Encourage reporting by managers. How can organizations ensure that managers report
suspicious behavior of their direct subordinates? Maintain clear and fair policies; handle
insider events tactfully and equitably; train managers to deal with problem employees; ensure
that there is a smooth, well-documented mechanism for reporting insider incidents up the
management chain.

• Have an insider incident response plan in place. How can incident handlers respond to insider
attacks efficiently and in a reproducible manner? Ensure that the incident management team
has a clear, institutionalized response plan for dealing with insider incidents.

• Tailor incident response processes. How do incident responders know how to deal with insider
attacks? Tailor the standard incident response processes to deal with insider attacks.

CONCLUSION

In recent years, Clay Shirky has been a vocal critic of hierarchical organization. In Here Comes
Everybody: The Power of Organizing without Organizations [Shirky 2008] he argues that the new
technologies of social networks are doing away with hierarchical structures in our society, and in
“Ontology is Overrated” [Shirky 2005] he tells the amusing story of Yahoo’s efforts to maintain a
hierarchical classification in face of the overwhelming mass of manifestly non-hierarchical data
on the internet. In organizing our insider threat pattern language, we decided to embrace the
advantages of these changes and use a multi-dimensional structure.

This material is based upon work funded and supported by the United States Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.
NO WARRANTY
THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS”
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.
This material has been approved for public release and unlimited distribution except as restricted below.
Internal use: Permission to reproduce this material and to prepare derivative works from this material for internal use is granted,
provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use: This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Multidimensional Pattern Languages Page - 9

ACKNOWLEDGEMENTS

The authors would like to thank Paul Ruggiero of the Software Engineering Institute for technical
editing of this paper.

REFERENCES

[Alexander 1977] Alexander, C. A Pattern Language: Towns, Buildings, Construction. Oxford
University Press, 1977.

[Allweyer 2010] Allweyer, T. BPMN 2.0: Introduction to the Standard for Business Process
Modeling. Books on Demand, 2010.

[Baker 1962] Baker, K.M. “An unpublished essay of Condorcet on technical methods of
classification.” Annals of Science, vol. 18, No 2, 1962, 99-123.

[Bertino 2012] Bertino, E. “Data Protection from Insider Threats.” Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2012.

[Caralli 2011] Caralli, R.; Allen, J.; & White, D. CERT® Resilience Management Model: A
Maturity Model for Managing Operational Resilience. Addison-Wesley, 2010.

[Hafiz 2011] Hafiz, M.; Adamczyk, P.; & Johnson, R. “Growing a Pattern Language (for
Security).” 18th Conference on Pattern Languages of Programs (PLoP ’11), October 21-23, 2011.

[Ranganathan 2007] Ranganathan, S. Colon Classification. Ess Ess Publications, New Delhi,
2007.

[Schumacher 2006] Schumacher, M.; Fernandez-Buglioni, E.; Hybertson, D.; Buschmann, F.; &
Sommerlad, P. Security Patterns: Integrating Security and Systems Engineering. John Wiley &
Sons, Ltd., 2006.

[Shirky 2008] Shirky, C. Here Comes Everybody: The Power of Organizing without
Organizations. Punguin Press, New York, 2008.

This material is based upon work funded and supported by the United States Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.
NO WARRANTY
THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS”
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.
This material has been approved for public release and unlimited distribution except as restricted below.
Internal use: Permission to reproduce this material and to prepare derivative works from this material for internal use is granted,
provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use: This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Multidimensional Pattern Languages Page - 10

[Shirky 2005] “Ontology is Overrated.” Verified 2012-08-15 at shirky.com/writings.

[VanHilst 2009] M. VanHilst, E.B.Fernandez, and F. Braz, "A multidimensional classification for
users of security patterns", Journal of Research and Practice in Information Technology, vol. 41,
No 2, May 2009, 87-97.

[Zachman1987] Zachman, J. “A Framework for Information Systems Architecture.” IBM Systems
Journal, 26(3), IBM Publication G321-5298, 1987.

Multidimensional Pattern Languages Page - 11

